
1 INTRODUCTION 

Numerical calculations have been carried out with 
the elastoplastic Hardening-Soil model developed at 
the University of Stuttgart and the hypoplastic model 
developed at the University of Karlsruhe. Both mod-
els are nowadays extended to include small-strain 
stiffness effects. Both models have been calibrated 
by Hintner et al (2006) on the basis of high quality 
experimental data from oedometer and triaxial tests. 

It was already shown by Hintner et al. (2006) that 
the comparison between two completely different 
constitutive numerical models gave a good agree-
ment on the load-settlement curves for a strip footing 
as well as circular footing. In section 4 the impor-
tance of considering the effects of the high stiff-
nesses at very low strain levels in numerical analysis 
will be highlighted. 

In section 5 the ultimate load envelope for in-
clined loads using the above-mentioned soil models 
will be presented. The computed ultimate loads also 
will be compared to conventional geotechnical de-
sign for the bearing capacity problem such the Ger-
man code of practice.  

In section 6 the horizontal displacement under in-
clined loads will be discussed. The horizontal load-
horizontal displacement curves are then compared to  

the results of an analytical method able to predict 
horizontal displacements due to horizontal loads. 
This method was described by Giroud (1969) for an 
elastic halfspace. We extended it to cover finite lay-
ers.  

2 CONSTITUTIVE SOIL MODELS  

The elastoplastic Hardening-Soil model goes back to 
the double hardening model as published by Ver-
meer (1978). Schanz (1998) created a similar model 
by using a Mohr-Coulomb type yield surface instead 
of a Matsuoka & Nakai type one and by introducing 
user-friendly input parameters. Most recently this 
model was extended by Benz (2006) to account for 
small-strain soil behaviour. Both the HS model and 
the HS-small model, i.e. the newest extension by 
Benz have been implemented in the Plaxis finite 
element code.  

The hypoplastic model as also used in this study 
goes back to the original work of Kolymbas (1991). 
In 1996 a hypoplastic model with a predefined limit 
state surface taking Matsuoka & Nakai criterion was 
published by von Wolffersdorff. Later this constitu-
tive model was extended by Niemunis & Herle 
(1997) to include the so-called small-strain stiffness. 
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ABSTRACT: Two different constitutive models are used for the numerical simulation of footings, namely an 
elastoplastic model as developed at the University of Stuttgart and a hypoplastic model as developed at the 
University of Karlsruhe. Both models have been extended to include high soil stiffnesses at very low strain 
levels and it will be shown that this significantly improves the quality of FE predictions of footings under 
load. Without such an extension both models tend to overestimate settlements; in particular for plane strain 
strip footings. In classical settlement analyses the small-strain stiffness is not used and they thus tend to over-
estimate settlements. This effect is reduced by the introduction of a so-called “limit depth”. The classical 
“limit depth” criterion will be discussed and compared to data from FE-analyses.  

In the second part of this paper attention is focused on inclined loads. Computational results are also dis-
cussed for inclined failure loads, but the emphasis is on (horizontal) displacements under working loads. In 
analogy to the simple elasticity method as often used for practical settlement analyses, we consider such a 
formula for the horizontal displacement. No doubt, the difficulty is to assess an appropriate Young`s Modulus 
for use in such a formula, as also discussed in this paper.  
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Figure 1.  Characteristic curve of a drained triaxial test (left) 
and an oedometer test (right).  

3 INPUT DATA FOR THE SOIL  

Calculations of a strip footing have been performed 
for loose and dense Hostun sand. The soil parame-
ters were obtained by calibrating them on the basis 
of oedometer and triaxial tests. Good fitting between 
experimental data and numerical simulations was 
shown by Hintner et al. (2006) both for triaxial and 
oedometer test data. The parameters for the HS-
small model and the hypoplastic model are given in 
Tables 1 and 2 respectively. The stiffnesses for the 
HS-(small) model are given at a reference pressure 
of pref = 100 kN/m². The meaning of the stiffness pa-
rameters E50, Eoed and Eur is illustrated in Figure 1.  
 
 
Table 1.  Parameters for the HS model. ___________________________________________ 
Basic model       loose  dense Hostun sand  ___________________________________________ 
γ     [kN/m³]   15.0    17.0 
ϕ´     [°]     34.0    42.0 
ψ     [°]       0.0    16.0   
c´     [kN/m²]     0.0      0.0 
E50

ref
    [MN/m²]  12.0    30.0  

Eoed
ref

   [MN/m²]  16.0    30.0 
m     [-]       0.75     0.55 
Eur

ref
    [MN/m²]  60.0    90.0 

νur
 
    [-]       0.25     0.25 ___________________________________________ 

Parameters for small-strain stiffness  ___________________________________________ 

E0
ref

    [MN/m²]   170.0     270.0 
γ0,7

 
   [-]       0.0002     0.0002 ___________________________________________ 

 
 
Table 2.  Parameters for the hypoplastic model. ___________________________________________ 
Basic model      Hostun sand  ___________________________________________ 
hS     [MN/m³]    3800.0    
ϕc     [°]        32.0      
ec0     [-]      0.91    
ed0     [-]      0.61     
ei0     [-]      1.09    
n     [-]      0.29   
α     [-]      0.134  
β 

    [-]      1.35  ___________________________________________ 

Parameters for small-strain stiffness  ___________________________________________ 
R     [-]       0.00006 
mR    [-]      5.0 
mT    [-]      2.0 
βr     [-]      0.5 
χ 

    [-]      2.0 ___________________________________________  

Dq

 
 

Figure 2.  FE mesh of the strip footing.  

4 LIMIT DEPTH  

Classical settlement analyses need a limit depth in 
order not to overestimate the settlements. According 
to Tomlinson (1995) and the German code of prac-
tice DIN 4019 (1979) the limit depth is the depth 
where the additional stress due to the footing is 
twenty per cent of the initial effective vertical pres-
sure.  

Numerical calculations have been carried out for a 
one meter wide strip footing and for a circular foot-
ing with a diameter of one meter. Both are embed-
ded one meter in dense Hostun sand (Fig. 2). To in-
vestigate the influence of the high stiffnesses at very 
small strains we will consider data for a footing pres-
sure of 150 for the strip footing and 400 kN/m² for 
the circular footing in more detail. 

Figures 3 and 4 show the vertical displacement 
over depth as resulting from the HS model, the HS-
small model and the hypoplastic model. For the strip 
footing, it is observed that the influence of small-
strain stiffness is considerable. The HS-model would 
seem to be out as it does not incorporate a small-
strain stiffness. It can be seen that below a certain 
depth the vertical displacements tend to be negligi-
bly small when small-strain stiffness is accounted 
for. One can observe that this depth is in good 
agreement with the limit depth in classical settle-
ment analysis. Regarding the circular footing (Fig. 4) 
it can be seen that small-strain stiffness is not that 
important, since the HS and the HS-small model 
give nearly the same results.  

Hence, the idea of a limit depth is well explained 
on the basis of small-strain stiffness, as also argued 
by Hintner et al. (2006). Another advantage of small-
strain stiffness models is that numerical results de-
pend no longer on the mesh size being special for 
plane strain problems. For numerical settlement 
analyses that do not consider the effect of small-
strain stiffness, it is recommended to use a limit 
depth. And this limit depth can be taken according 
classical settlement analysis, e.g. according to the 
20% rule.  
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Figure 3.  Vertical displacement over depth for strip footing. 
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Figure 4. Vertical displacement over depth for circular footing.  

5 BEARING CAPACITY OF INCLINED LOADS  

5.1  Analytical methods  

For a strip footing the well-known bearing capacity 
equation for inclined loading reads: 

γ⋅⋅⋅γ+⋅⋅+⋅⋅= iNbiNqiNq bqqccf c 0'  (1)  

where Nc , Nq and Nb are friction dependent bearing 
capacity factors, c´ is the effective cohesion, q0 is the 
overburden pressure at foundation level and γ is the 
density of the soil below foundation level. In litera-
ture one often finds a different notation with 
Nb = ½ Nγ.  

The bearing capacity equation is well-established, 
but varying expressions can be found for the inclina-
tion factors ic, iq and iγ. Moreover, Nb or Nγ factors 
are computed in a different way depending on the 
country considered. Within this study the bearing 
capacity according the German standard DIN 4017 
(2001) is used for the comparison to numerical cal-
culations. Note that this code of practice is based on 
Meyerhof (1962) for the Nb factors.  

5.2 Numerical simulations for inclined loading 

The numerical calculations for the one meter wide 

strip footing were performed with a plane-strain 

mesh (Fig. 5) The ground is represented by 6-noded 

triangular elements. The boundary conditions of the 

finite element mesh are as follows: The ground sur-

face is free to displace, the side surfaces have roller  
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Figure 5.  FE mesh of the strip footing with inclined loads.  

 
 
boundaries and the base is fixed. The embedment of 
one meter is simulated with the overburden pressure 
q0. Note that also the analytical approaches neglect 
the soil strength of the overburden. The footing itself 
behaves rigid. Between soil and foundation interface 
elements are us ed with contact friction equal to soil 
friction. The load has a constant inclination angle δ 
with respect to the vertical axis.  

Numerical analysis of bearing capacity require soil 
models that should accurately simulate the soil 
strength. Since the Mohr-Coulomb model and the 
HS-small model are based on the same failure crite-
rion the calculations have been carried out with the 
simple Mohr-Coulomb model and the hypoplastic 
model.  

5.3 Failure envelope for inclined loads 

Figures 6 and 7 show the envelopes of ultimate loads 
for the strip footing carried out with the Mohr-
Coulomb model, the hypoplastic model and the ana-
lytical method according the German code of prac-
tice for loose as well as dense Hostun sand. It is ob-
served that the Mohr-Coulomb and the analytical 
method give more or less the same envelope, but 
Mohr-Coulomb model is slightly more conservative. 
The hypoplastic model gives significantly higher ul-
timate loads; in the range of 20% for the dense sand 
and around 30% for the loose sand.  

The difference between the two models results 
from the different failure surface since the hypoplas-
tic model is based on Matsuoka & Nakai criterion 
(von Wolffersdorff 1996). Only under triaxial condi-
tions both the Mohr-Coulomb and the Matsu-
oka & Nakai failure criterion give the same friction 
angle. For any other conditions the Mohr-Coulomb 
failure criterion yields to lower strength. Figures 6 
and 7 show also that the shapes of the failure enve-
lope for both the numerical and analytical methods 
are similar. These figures show the normalised ulti-
mate loads, where V0 is the bearing capacity for the 
vertical loading. 
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Figure 6.  Failure envelope for the strip footing on dense sand. 
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Figure 7.  Failure envelope for the strip footing on loose sand. 

6 DISPLACEMENT BEHAVIOUR OF A STRIP 
FOOTING ON SAND 

Numerical calculations have also been performed to 
investigate the displacement of the strip footing for 
different loading paths. Figure 8 shows the dis-
placement trajectories for two completely different 
paths of loading, namely for an inclined loading (I-
C) and for horizontal loading (V-H). The loading 
paths have been chosen such there is the same load 
inclination at failure. At failure an inclination angle 
of δ = 20° is achieved.  

As one can see in Figure 8, the vertical displace-
ment is nearly the same, whereas the horizontal dis-

placements differ by a factor of approximately 2. 
The difference is not a surprise. During I-C loading 
horizontal displacement occurs from beginning of 
loading. For V-H loading the soil has an increased 
stiffness after vertical loading and therefore the hori-
zontal displacement is much lower than in the I-C 
case.  

From Figure 8 it can be observed that the dis-
placement increments at failure have the same direc-
tion. Hence, the displacement increments at failure 
are load path independent. The directon of the dis-
placement increments are plotted in Figure 9. One 
can observe a non-associated flow rule for the dis-
placement increments at failure. The angle between 
the normal line and the increments can be expressed 
with ϕ´ - ψ. For the loose sand with dilatancy angle 
ψ = 0 one gets the friction angle ϕ´.  

The angle ϕ´ - ψ is also found between the strain 
increment and the normal line in the direct shear test 
of a dense sand (Fig. 10).  
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Figure 8. Displacement trajectories for 2 different load paths. 
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Figure 9.  Displacement increments at failure (dense sand). 
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Figure 10.  Analogy to plasticity theory. 



7  ELASTIC SOLUTION FOR HORIZONTAL 
DISPLACEMENT PREDICTION 

7.1  Elastic solution for horizontal displacement  

According to Eurocode 7 (e.g Orr & Farrell 1999) 
the elasticity based settlement analysis is still state of 
the art in geotechnical engineering. One method is 
the adjusted elasticity method (Tomlinson 1995) that 
is based on the following equation:  

fbq
E

s ⋅⋅∆⋅
ν−

=
21

 (2)  

where E is the  Young´s Modulus, ν is the Poisson´s 
ratio, ∆q is the net foundation pressure, b is the 
width of foundation, and f is the influence factor. 
The Young´s modulus of the soil may be estimated 
from the results of back-analyses, or from laboratory 
or in situ tests.  

In this study we consider such a formula also for 
the horizontal displacement due to horizontal loads. 
Giroud (1969) gives an expression for the horizontal 
displacement due to uniform horizontal loading on 
an infinite elastic layer. This equation may be ex-
tended to finite elastic layers:  

)1(22

1

ν+
=⋅⋅τ⋅=

E
Gwith

h
fb

G
u  (3)  

where u is the horizontal displacement, τ  is the av-
erage applied shear stress and fh is the influence fac-
tor. This factor depends on the b/h ratio, where b is 
the width of the foundation and h is the height of the 
compressible layer as indicated in Figure 11. In prac-
tice the depth h is either a physical layer thickness or 
the limit depth as described before. The influence 
factor fh has been obtained from FE-computations 
for rigid footings on an elastic subsoil and results are 
shown in Table 3. 

The shear modulus G in equation 3 may be com-
puted from the constrained modulus Eoed (also de-
noted as M) via the Poisson ratio ν = 0.3. Within this 
study Eoed is the tangent oedometer modulus due to 
the vertical stress at the end of vertical loading in a 
representative point under the footing. This vertical 
stress consists of the initial effective vertical pres-
sure and the additional stresses due to loading. The 
additional stresses can be obtained on the basis of 
tables or graphs according Steinbrenner (1934).  

The representative point is located the width b be-
low the footing as suggested by the authors. One can 
see that this fitting is satisfactorily regarding Figure 
12 that shows Eoed over depth for the vertical load 
V = 117 kN/m. 

7.2 Numerical calculations   

The numerical calculations have been carried out 
with the HS-small model and the hypoplastic model, 
both models extended by high stiffnesses at very  
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Figure 11.  Elastic solution for horizontal displacement. 

 

 
 
Table 3.  Influence factors fh for rigid footings and ν = 0.3. _______________________________________________ 

rigid     a/b = 1 a/b = 2 a/b = 3  a/b = 5  a/b = ∞ _______________________________________________ 

h/b = 0.5   0.62  0.67  0.67  0.67  0.67 
h/b = 1.0   0.77  0.90  0.94  0.96  0.95 
h/b = 1.5   0.83  1.01  1.08  1.12  1.13 
h/b = 2.0   0.86  1.07  1.16  1.23  1.25   
h/b = 3.0   0.89  1.13  1.25  1.36  1.43  
h/b = 5.0   0.92  1.18  1.32  1.47  1.66 _______________________________________________ 

 

 
small strains. The FE simulation is according the FE 
calculations for determining the bearing capacity as 
described before. First the vertical load is applied 
and then horizontal loading up to failure begins 
keeping the vertical load constant. No eccentricity is 
considered.  

Figures 13 and 14 show the load-displacement 
curves obtained by the numerical analyses and by the 
elastic solution for different vertical loads for dense 
as well as loose sand. For the loose sand there is a 
good agreement between the two different models. 
For the dense sand however, the hypoplastic model 
behaves slightly softer than the HS model. Of course 
they behave different close to failure as already ob-
served for the bearing capacity problem.  

The load-displacement curve for the elastic solu-
tion is linear since the E-modulus obtained from ver-
tical stresses in the soil remains constant during 
horizontal loading. Furthermore the elastic solution 
appears to be a good method for predicting horizon-
tal displacements under horizontal working loads.  
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Figure 12.  Representative point and Eoed.over depth.  
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Figure 13.  Horizontal load-displacement (dense sand). 
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Figure 14.  Horizontal load-displacement (loose sand). 

8 CONCLUSIONS  

This study comprehends the comparison of two 
completely different soil models namely the elast-
plastic HS-small model and an hypoplastic model. 
Both are extended to include the effects of small-
strain stiffness. At failure they differ as they are 
based on different failure criterions. But for working 
load level they give fairly similar results as already 
presented by Hintner et al. (2006) for vertical load-
ing.  

For the bearing capacity problem the paper shows 
good agreement between conventional geotechnical 
design and numerical results as based on a Mohr-

Coulomb failure criterion. The hypoplastic model 
based on Matsuoka & Nakai criterion gives higher 
ultimate loads for the strip footing problem. But this 
is in accordance to Wroth (1984) who proposed for 
relating plane strain results the linear relationsship 
8ϕ´ps ≈ 9ϕ´tc where ϕ´ps is the plane strain friction 
angle and ϕ´tc is the triaxial compression friction an-
gle.  

Within this study an equation derived from elas-
ticity theory to predict horizontal displacement is 
presented and it seems that this method would be 
useful in geotechnical engineering practice for easy 
loading conditions.  
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